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Weyl-invariant lightlike branes and soldering
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We consider self-consistent coupling of the recently introduced new class of Weyl-conformally invariant
lightlike branes (WILL-branes) to D =4 Einstein-Maxwell system plus a D =4 three-index antisymmetric
tensor gauge field.We find static spherically-symmetric solutions where the space-time consists of two regions
with different black-hole-type geometries and different values for a dynamically generated cosmological
constant, separated by the WILL-brane which “straddles” their common event horizon. Furthermore, the
WILL-brane produces a potential “well” around itself acting as a trap for test particles falling towards the
horizon.
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1 Introduction

Lightlike membranes are of particular interest in general relativity as they describe impulsive lightlike
signals arising in various violent astrophysical events, e.g., final explosion in cataclysmic processes such
as supernovae and collision of neutron stars [1]. Lightlike membranes are basic ingredients in the so called
“membrane paradigm” theory [2] which appears to be a quite effective treatment of the physics of a black
hole horizon.

In [3,4] lightlike membranes in the context of gravity and cosmology have been extensively studied from
a phenomenological point of view, i.e., by introducing them without specifying the Lagrangian dynamics
from which they may originate. Recently in a series of papers [6,7] we have developed a new field-theoretic
approach for a systematic description of the dynamics of lightlike branes starting from concise Weyl-
conformally invariant actions. The latter are related to, but bear significant qualitative differences from, the
standard Nambu-Goto-type p-brane actions1 (here (p + 1) is the dimension of the brane world-volume).

In the present note we discuss spherically-symmetric solutions for the coupled system of bulk D =
4 Einstein-Maxwell plus 3-index antisymmetric tensor gauge field interacting with a WILL-brane. The
latter serves as a matter and charged source for gravity and electromagnetism and, in addition, produces
a space-varying dynamical cosmological constant. The above solutions describe space-times divided into
two separate regions with different black hole geometries and different values of the dynamically generated
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branes, whereas the lightlike branes are treated as a limiting case.
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cosmological constant, separated by the WILL-brane which automatically position itself on (“straddles”)
their common horizon. The matching of the physical parameters of the two black hole space-time regions
(“soldering”) is explicitly given in terms of the free WILL-brane coupling parameters (electric surface charge
density and Kalb-Rammond coupling constant). A physically intersting implication of the above solutions
is the emergence of a potential “well” around the WILL-brane trapping infalling test particles towards the
common horizon.

2 Weyl-conformally invariant lightlike branes

In [6,7] we proposed the following new kind of p-brane action (in what follows we shall concentrate on the
first nontrivial case p=2):

S = −
∫

d3σ Φ(ϕ)
[ 1
2

γab∂aXµ∂bX
νGµν −

√
FabFcdγacγbd

]

− q

∫
d3σ εabcAµ∂aXµFbc − β

3!

∫
d3σ εabc∂aXµ∂bX

ν∂cX
λAµνλ (1)

The first significant difference of (1) w.r.t. standard Nambu-Goto-type p-brane action is the presence of a
new non-Riemannian reparametrization-covariant integration measure density:

Φ(ϕ) ≡ 1
3!

εijkεabc∂aϕi∂bϕ
j∂cϕ

k , (a, b, c = 0, 1, 2 , i, j, k = 1, 2, 3) ,

built in terms of auxiliary world-volume scalar fields ϕi. As usual γab denotes the intrinsic Riemannian
metric on the brane world-volume and γ ≡ det ‖γab‖. The second important difference is the “square-
root” Maxwell term2 involving an auxiliary world-volume gauge field Aa with Fab = ∂aAb − ∂bAa. Gµν

(µ, ν = 0, 1, 2, 3) denotes Riemannian metric on the embedding D = 4 space-time. The second Chern-
Simmons-like term in (1), describing a coupling to external D=4 space-time electromagnetic field Aµ, is
a special case of a class of Chern-Simmons-like couplings of extended objects to external electromagnetic
fields proposed in [9]. The last term is a Kalb-Ramond-type coupling to external space-time rank 3 gauge
potential Aµνλ.

The action (1) is manifestly invariant under Weyl (conformal) symmetry: γab−→γ′
ab = ρ γab, ϕi −→

ϕ′ i = ϕ′ i(ϕ) with Jacobian det
∥∥∥ ∂ϕ′ i

∂ϕj

∥∥∥ = ρ.

Let us recall the physical significance of Aµνλ [10]. In D = 4 when adding kinetic term for Aµνλ

coupled to gravity (see Eq.(5) below), its field-strength Fκλµν = 4∂[κAλµν] = F√−Gεκλµν with a single
independent component F produces dynamical (positive) cosmological constant K = 4

3 πGNF2.
Invariance under world-volume reparametrizations allows to introduce the standard (synchronous) gauge-

fixing conditions: γ0i = 0 (i = 1, 2) , γ00 = −1. With the latter gauge choice and using the short-hand
notation (∂aX∂bX) ≡ ∂aXµGµν∂bX

ν , the equations of motion for the brane action (1) read:

(∂0X∂0X) = 0 , (∂0X∂iX) = 0 ,
(
∂iX∂jX

) − 1
2

γijγ
kl (∂kX∂lX) = 0 , (2)

these are in fact constraints analogous to the (classical) Virasoro constraints of string theory;

∂iX
µ∂jX

νFµν(A) = 0 , ∂iχ +
√

2q∂0X
µ∂iX

νFµν(A) = 0 , (3)

(here χ ≡ Φ(ϕ)√−γ
plays the role of variable brane tension, Fµν(A) = ∂µAν − ∂νAµ);

�̃(3)Xµ +
(
−∂0X

ν∂0X
λ + γkl∂kXν∂lX

λ
)

Γµ
νλ

2 “Square-root” Maxwell (Yang-Mills) action in D=4 was originally introduced in the first [8] and later generalized to “square-
root” actions of higher-rank antisymmetric tensor gauge fields in D ≥ 4 in the second and third [8].
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− q
γkl (∂kX∂lX)√

2 χ
∂0X

νFλν Gλµ − β

3!
εabc

χ
√

γ(2)
∂aXκ∂bX

λ∂cX
νGµρ Fρκλν = 0 , (4)

where Fρκλν = 4∂[κAλµν] as above, �̃(3) ≡ − 1
χ
√

γ(2)
∂0

(
χ
√

γ(2)∂0

)
+ 1

χ
√

γ(2)
∂i

(
χ
√

γ(2)γij∂j

)
,

where γ(2) ≡ det ‖γij‖ (i, j = 1, 2), and Γµ
νλ = 1

2 Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) is the affine con-
nection corresponding to the external space-time metric Gµν .

The first Virasoro-like constraint in (2) explicitly exhibits the inherent lightlike property of the brane
model (1), hence the acronym WILL (Weyl-invariant light-like) brane.

3 Bulk gravity-matter coupled to will-brane

Let us now consider the coupled Einstein-Maxwell-WILL-brane system adding also a coupling to a rank 3
gauge potential:

S =
∫

d4x
√−G

[
R(G)

16πGN
− 1

4
FµνFµν − 1

4!2
FκλµνFκλµν

]
+ SWILL−brane . (5)

Here Fµν = ∂µAν − ∂νAµ, Fκλµν = 4∂[κAλµν] = F√−Gεκλµν as above, and the WILL-brane action is
the same as in (1).

The equations of motion for the WILL-brane subsystem are the same as (2)–(4), whereas the equations
for the space-time fields read:

Rµν − 1
2

GµνR = 8πGN

(
T (EM)

µν + T (rank−3)
µν + T (brane)

µν

)
, (6)

∂ν

(√−GGµκGνλFκλ

)
+ q

∫
d3σ δ(4)

(
x − X(σ)

)
εabcFbc∂aXµ = 0 , (7)

ελµνκ∂κF + β

∫
d3σ δ(4)(x − X(σ))εabc∂aXλ∂aXµ∂aXν = 0 . (8)

The energy-momentum tensors read: T
(EM)
µν = FµκFνλGκλ − Gµν

1
4 FρκFσλGρσGκλ,

T (rank−3)
µν =

1
3!

[
FµκλρFν

κλρ − 1
8

GµνFκλρσFκλρσ

]
= − 1

2
F2Gµν , (9)

T (brane)
µν = −GµκGνλ

∫
d3σ

δ(4)
(
x − X(σ)

)
√−G

χ
√−γγab∂aXκ∂bX

λ . (10)

For the bulk gravity-matter system coupled to a charged WILL-brane (5) we find the following static
spherically symmetric solutions. The bulk space-time consists of two regions separated by the WILL-brane
sitting on (“straddling”) a common horizon of the former:

(ds)2 = −A(∓)(r)(dt)2 +
1

A(∓)(r)
(dr)2 + r2[(dθ)2 + sin2(θ) (dφ)2] , (11)

where the subscript (−) refers to the region inside, whereas the subscript (+) refers to the region outside
the horizon at r = r0 ≡ rhorizon with A(∓)(r0) = 0. The interior region is a Schwarzschild-de-Sitter
space-time:

A(r) ≡ A(−)(r) = 1 − K(−)r
2 − 2GNM(−)

r
, for r < r0 , (12)
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whereas the exterior region is Reissner-Norström-de-Sitter space-time:

A(r) ≡ A(+)(r) = 1 − K(+)r
2 − 2GNM(+)

r
+

GNQ2

r2 , for r > r0 , (13)

with Reissner-Norström (squared) charge given by Q2 = 8πq2r4
0 . The rank 3 tensor gauge potential

together with its Kalb-Rammond-type coupling to the WILL-brane produce via Eq.(8) a dynamical space-
varying cosmological constant which is different inside and outside the horizon: K(±) = 4

3 πGNF2
(±) for

r ≥ r0 ( r ≤ r0 ), F(+) = F(−) − β. The Einstein Eqs.(6) and the Xµ-brane Eqs.(4) yield two matching
conditions for the normal derivatives w.r.t. the horizon of the space-time metric components:

(
∂rA(+) − ∂rA(−)

)∣∣
r=r0

= −16πGNχ ,
(
∂rA(+) − ∂rA(−)

)∣∣
r=r0

= −
r0(2q2 + β2)∂rA(−)

∣∣
r=r0

2χ + βr0F(−)
.

The latter conditions allow to express all physical parameters of the solution, i.e., two spherically symmetric
black hole space-time regions “soldered” along a common horizon via the WILL-brane in terms of 3 free
parameters (q, β,F) where (cf. Eq.(1)): (a) q is the WILL-brane surface electric charge density; (b) β is
the WILL-brane (Kalb-Rammond-type) charge w.r.t. rank 3 space-time gauge potential Aλµν ; (c) F(−) is
the vacuum expectation value of the 4-index field-strength Fκλµν in the interior region. For the common
horizon radius, the Schwarzschild and Reissner-Nordström masses we obtain:

r2
0 =

1

4πGN

(
F2

(−) − βF(−) + q2 + β2

2

) ,

M(−) =
r0

(
2
3 F2

(−) − βF(−) + q2 + β2

2

)

2GN

(
F2

(−) − βF(−) + q2 + β2

2

) , (14)

M(+) = M(−) +
r0

2GN

(
F2

(−) − βF(−) + q2 + β2

2

)
(

2q2 +
2
3

βF(−) − 1
3

β2
)

. (15)

For the brane tension we get accordingly: χ = r0
2

(
q2 + β2

2 − 2βF(−)

)
.

Using expressions (14), (15) we find for the slopes of the metric coefficients A(±)(r) at r = r0:

∂rA(+)
∣∣
r=r0

= −∂rA(−)
∣∣
r=r0

, ∂rA(−)
∣∣
r=r0

= 8πGNχ = 4πGNr0

(
q2 +

β2

2
− 2βF(−)

)
. (16)

In view of (16) (and assuming for definiteness β > 0) we conclude:

(i) In the area of parameter space F(−) >
q2+ β2

2
2β (i.e., when χ < 0 – negative brane tension) the

common horizon is: (a) the de-Sitter horizon from the point of view of the interior Schwarzschild-de-Sitter
geometry; (b) it is the external Reissner-Nordström horizon (the larger one) from the point of view of the
exterior Reissner-Nordström-de-Sitter geometry.

(ii) In the opposite area of parameter space F(−) <
q2+ β2

2
2β (i.e., when χ > 0 – positive brane tension)

the common horizon is: (a) the Schwarzschild horizon from the point of view of the interior Schwarzschild-
de-Sitter geometry; (b) it is the internal (the smaller one) Reissner-Nordström horizon from the point of
view of the exterior Reissner-Nordström-de-Sitter geometry.

Now let us consider planar motion of a (charged) test patricle with mass m and electric charge q0

in a gravitational background given by the solutions in Sect. 3. Conservation of energy yields E2

m2 =
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r′2 + V 2
eff (r) (E, J – energy and orbital momentum of the test particle; prime indicates proper-time

derivative) with:

V 2
eff (r) = A(−)(r)

(
1 +

J2

m2r2

)
+

2Eq0

m2

√
2qr0 − q2

0

m2 2q2r2
0 (r ≤ r0)

V 2
eff (r) = A(+)(r)

(
1 +

J2

m2r2

)
+

2Eq0

m2

√
2qr2

0

r
− q2

0

m2

2q2r4
0

r2 (r ≥ r0) (17)

where A(∓) are the same as in (12) and (13). Taking into account (16) we see that in the parameter interval

F(−) ∈
(

q2+ β2

2
β ,∞

)
the (squared) effective potential V 2

eff (r) acquires a potential “well” in the vicinity

of the WILL-brane (the common horizon) with a minimum on the brane itself.
In the simplest physically interesting case with q = 0, F(−) = β and β – arbitrary, i.e., match-

ing of Schwarzschild-de-Sitter interior (with dynamically generated cosmological constant) against pure
Schwarzschild exterior (with no cosmological constant) along the WILL-brane as their common horizon,
the typical form of V 2

eff (r) is graphically depicted in Fig. 1.

0.5 1 1.5 2 2.5

0.5

1

1.5

2

Fig. 1 Shape of V 2
eff (r) as a function of the

dimensionless ratio x ≡ r/r0.

Thus, we conclude that if a test particle moving towards the common event horizon loses energy (e.g.,
by radiation), it may fall and be trapped by the potential well, so that it neither falls into the black hole nor
can escape back to infinity and, as a result, a “cloud” of trapped particles is formed around the WILL-brane
materialized horizon.
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